The Combinatorics of Bogoliubov’s Recursion in Renormalization

نویسنده

  • KURUSCH EBRAHIMI-FARD
چکیده

We describe various combinatorial aspects of the Birkhoff–Connes–Kreimer factorization in perturbative renormalisation. The analog of Bogoliubov’s preparation map on the Lie algebra of Feynman graphs is identified with the pre-Lie Magnus expansion. Our results apply to any connected filtered Hopf algebra, based on the pro-nilpotency of the Lie algebra of infinitesimal characters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Dependent Real-Space Renormalization Group Method

In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...

متن کامل

A Noncommutative Bohnenblust–spitzer Identity for Rota–baxter Algebras Solves Bogoliubov’s Recursion

The Bogoliubov recursion is a particular procedure appearing in the process of renormalization in perturbative quantum field theory. It provides convergent expressions for otherwise divergent integrals. We develop here a theory of functional identities for noncommutative Rota–Baxter algebras which is shown to encode, among others, this process in the context of Connes–Kreimer’s Hopf algebra of ...

متن کامل

Hopf Algebra Primitives and Renormalization

The analysis of the combinatorics resulting from the perturbative expansion of the transition amplitude in quantum field theories, and the relation of this expansion to the Hausdorff series leads naturally to consider an infinite dimensional Lie subalgebra and the corresponding enveloping Hopf algebra, to which the elements of this series are associated. We show that in the context of these str...

متن کامل

A NUMERICAL RENORMALIZATION GROUP APPROACH FOR AN ELECTRON-PHONON INTERACTION

A finite chain calculation in terms of Hubbard X-operators is explored by setting up a vibronic Harniltonian. The model conveniently transformed into a form so that in the case of strong coupling a numerical renormalization group approach is applicable. To test the technique, a one particle Green function is calculated for the model Harniltonian

متن کامل

Combination laws for scaling exponents and relation to the geometry of renormalization operators

Renormalization group has become a standard tool for describing universal properties of different routes to chaos – period-doubling in unimodal maps, quasiperiodic transitions in circle maps, dynamics on the boundaries of Siegel disks, destruction of invariant circles of area-preserving twist maps, and others. The universal scaling exponents for each route are related to the properties of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007